

0. CONTEXT ... 3

1. COLLECTIONS 3

 SUMMARY ... 3

2. TEST DRIVEN DEVELOPMENT 4

 OVERVIEW ... 4
 JUNIT ... 4

2.2.1. ASSERTIONS .. 4
2.2.2. JUNIT ANNOTATIONS 5
2.2.3. JUNIT EXAMPLE 5

 MOCKITO .. 9
2.3.1. OVERVIEW .. 9
2.3.2. VERIFICATION (HOW MOCKITO WORKS).... 9
2.3.3. MOCKITO EXAMPLE 10

3. EXCEPTIONS (TRY… CATCH) 13

 OVERVIEW ... 13
 TRY AND CATCH 13
 FINALLY .. 14
 THROW ... 14
 MULTIPLE CATCH BLOCKS AND THEIR ORDER:

 15
 STACK TRACE:..................................... 15
 HIERARCHY: 15
 THROW VS THROWS: 15

4. CLASSES & ABSTRACT CLASSES 17

 CONCRETE CLASSES 17
 CONSTRUCTORS 18
 ABSTRACT CLASSES & METHODS 19
 INTERFACES .. 20
 OVERRIDING METHODS 22
 OVERLOADING 23
 SUPER AND THIS 25

5. THE 4 PILLARS OF OOD (ARSALAAN) ... 25

 PILLAR 1: .. 25
 PILLAR 2: .. 25
 PILLAR 3: .. 26
 PILLAR 4: .. 26

6. JDBC (JAVA DATABASE CONNECTIVITY,
JAVA+SQL) [AMANDA] 27

 BACKGROUND & SETUP: 27

 JDBC INTERFACES 27
6.2.1. CONNECTION: 27
6.2.2. STATEMENT: 27
6.2.3. RESULTSET: .. 28
6.2.4. PREPAREDSTATEMENTS (EXTENDS

STATEMENT): ... 28
6.2.5. JDBC EXAMPLE CODE 29
6.2.6. CALLABLESTATEMENT (EXTENDS

PREPAREDSTATEMENT): 30
6.2.7. STOREDPROCEDURE: 30

7. JPA (JAVA+DATABASES) (JACK) 31

7.1.1. BACKGROUND 31
 METHODS: .. 31

7.2.1. FIND: ... 31
7.2.2. PERSIST: ... 31
7.2.3. MERGE: .. 31
7.2.4. REMOVE: .. 31
7.2.5. TYPED QUERY: 32
7.2.6. ANNOTATIONS: 32
7.2.7. ENTITYMANAGER & BEGIN() COMMIT() .. 32

8. SERVLET (CHARLIE) 33

8.1.1. BACKGROUND & OLD METHODS: 33
8.1.2. WEBSITE STATES: KEEPING INFORMATION

ABOUT THE USER ... 33
8.1.3. LIFECYCLE OF A REQUEST MADE TO A SERVER:
 34
8.1.4. LIFECYCLE OF A SERVLET: (WOULDN’T

NORMALLY SEE) ... 34

9. JSP (JAVA + HTML) (DAYA) 35

 JSP OVERVIEW 35
 JSP DIRECTIVE 35
 EXPRESSION LANGUAGE 36
 DECLARATION 37
 SCRIPTLET .. 37
 EXPRESSION 37
 LIFECYCLE: ... 38
 JSTL TAGS ... 38
 JSTL BENEFITS 39

10. MEMORY (MO) 40

 EXAMPLE OF PASS-BY-VALUE LANGUAGE . 40
 STACK: .. 40
 HEAP: ... 40
 EXAMPLES OF STACK AND HEAP: 40
 NUMBER OF STACKS AND HEAPS IN JAVA . 40

 2

 STACK OVERFLOW ERROR & EXAMPLE 41
 GARBAGE COLLECTOR 41

11. DESIGN PATTERNS (WILL) 42

 1. OBJECT POOL 42
 2. FACTORY 42
 3. SINGLETON 42
 4. ADAPTER 42
 5. COMMAND 42
 6. OBSERVER 42

12. THREADS (ASH) 44

 11.1 BENEFITS OF MULTI-THREADING 44
 11.2 MAKING THREADS 44
 11.3 THREAD METHODS 44
 11.4 MULTI-THREADING HAZARDS AND

SOLUTIONS .. 45
12.4.1. 11.4.1 HAZARDS CAUSED BY LOCKS AND

SYNCHRONIZATION .. 45

13. COMPARISONS 46

 COMPARABLE 49
 COMPARATOR 49

 3

0. Context

10 Questions.
30 Minutes.
8Q = Theory
2Q = Reading Out Pseudo Code
“Closed Book”
Will cover OOD and Java course.
Will NOT ask about Java 8 subjects.

1. Collections

The benefit of using a Collection is that they have methods. Java provides a
Collections Framework with some classes and interfaces, these include:

Collections Framework

Interfaces Classes
List ArrayList, Vector

Set HashSet, TreeSet

Map HashMap, TreeMap

 Summary

Type Description
Allows

Duplicates?
Ordered? Example

List Like a shopping list. Y Y
ArrayList,
Vector

Set Opposite to List. N N
TreeSet,
HashSet

Queue
First In, First Out (FIFO).
Like a bus line.

Y Y PriorityQueue

Stack

Opposite of Queue.
Last in, First out (LIFO).
Like stacking and taking
plates.

Y Y

Map

Stores items in
"key/value" pairs, and
you can access them by
an index of another type.

Keys = N
Values = Y

HashMap = N
TreeMap = Y

HashMap,
TreeMap

Map: Keys and Value’s can be of different types OR the same type. Must specify
their types when creating Map objects.

 4

Write a failing test
that relies on code

not written yet

Write the minimum
amount of code to
make the test pass

Generalise the
code to work for
additional cases

(Refactor)

2. Test Driven Development

 Overview
“Test-driven development” refers to a style of programming in which three activities
are tightly interwoven: coding, testing (in the form of writing unit tests) and design (in
the form of refactoring). It is a technique where the programmer writes a test before
any production code, and then writes the code that will make that test pass.

Overview:

The 5 Steps of TDD

Qualities of a Good Test

1. Write the test Focused - It should only test one thing.

2. Make the test compile
Easy to read - The test name should make it
clear what the test is doing.

3. Watch the test fail
Simple - Don’t overcomplicate your test with
loops and decisions.

4. Do just enough to get the test to
pass

Independent - Individual tests should not
affect each other in any way.

5. Refactor and generalise
Flexible - A test and the code it is testing
should be able to be re-used in different
projects without having to change anything.

 JUnit

The pattern for writing unit tests is:

• Arrange – Set up preconditions

• Act – Call the code under test

• Assert – Check that expected results have occurred

2.2.1. Assertions
They are methods and can verify whether a test should pass or fail by checking
its return value. Below are examples of some common assertions:

assertEquals(expectedObject, actualObject)

assertNotEquals(expectedObject, actualObject)

assertTrue(boolean)

assertNull(object)

assertFalse(boolean)

 5

assertNotNull(object)

assertArraryEquals(expectedArray,actualArray)

2.2.2. JUnit Annotations
It is a special form of syntactic meta-data that can be added to Java source code for
better code readability and structure. Variables, parameters, packages, methods and
classes can be annotated. Below are examples of some common annotations:

@Test - Indicates that a method is a test

@BeforeEach - The annotated method should be run before each test

@BeforeAll - The annotated method should be run once before all tests

@AfterEach - The annotated method should be run after each test

@AfterAll - The annotated method should be run once after all tests

2.2.3. JUnit Example

Step 1 – Enable JUnit5 (Section 18.1.1)
Step 2 – Create JUnit Test Case File (Section 18.1.2) [Select setUp() method stub]

GradeCalculatorServiceTest.java

package com.fdmgroup.tdd.gradecalculator;

import static org.junit.jupiter.api.Assertions.*;

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

class GradeCalculatorServiceTest {

 @BeforeEach
 void setUp() throws Exception {
 }

 @Test
 void test() {
 fail("Not yet implemented");
 }

}

Step 3 – Write an object of the ‘ghost’ class as an attribute. This will prompt you to
create the actual class you have referenced.

GradeCalculatorServiceTest.java

class GradeCalculatorServiceTest{
GradesClass gradesClass;

 @BeforeEach

 6

 void setUp() throws Exception {
 }

@Test
 void test() {
 fail("Not yet implemented");
 }
}

Step 4 – Ensure ‘Source folder’ of the Java Class being created is situated in the
src/main/java directory.
GradesClass.java

public class GradesClass {

}

Step 5 – Create the object in the Test Case file in the setUp() method to finalise the
setting up process (Arrange step).

GradeCalculatorServiceTest.java

class GradeCalculatorTest {

 GradesClass gradesClass;

 @BeforeEach
 void setUp() throws Exception {
 gradesClass = new GradesClass(); //Arrange
 }

 @Test
 void test() {
 fail("Not yet implemented");
 }

}

Step 6 – Now you must write the GradesClass method according to the Problem and
carry out unit tests to ensure the program not only passes the tests but passes a
range of tests consistently and with minimal coding.

GradesClass.java

public class GradesClass implements GradeCalculatorService {

 @Override
 public String getClassification(double mark) {

 if (mark < 75 && mark >= 0) {
 return "fail";
 }

 else if (mark >= 75 && mark < 80) {
 return "pass";
 }

 else if (mark >= 80 && mark < 90) {
 return "merit";
 }

 else if (mark >= 90 && mark <= 100) {

 7

 return "distinction";
 }

 return null;

 }

}

 8

GradeCalculatorServiceTest.java

class GradeCalculatorServiceTest {

GradesClass gradesClass;

 @BeforeEach
 void setUp() throws Exception {
 gradesClass = new GradesClass(); //Arrange
 }

 // Testing Fail
 @Test
 void testGradeCalculatorService_returnsFail_whenPassed55() {
 String mark = gradesClass.getClassification(55); // Act
 assertEquals("fail", mark);
 }

 @Test
 void testGradeCalculatorService_returnsFail_whenPassed0() {
 String mark = gradesClass.getClassification(0); // Act
 assertEquals("fail", mark);
 }

 // Testing Pass
 @Test
 void testGradeCalculatorService_returnsPass_whenPassed75() {
 String mark = gradesClass.getClassification(75); // Act
 assertEquals("pass", mark);
 }

 @Test
 void testGradeCalculatorService_returnsPass_whenPassed79() {
 String mark = gradesClass.getClassification(79); // Act
 assertEquals("pass", mark);
 }

 // Testing Merit
 @Test
 void testGradeCalculatorService_returnsMerit_whenPassed80() {
 String mark = gradesClass.getClassification(80); // Act
 assertEquals("merit", mark);
 }

 @Test
 void testGradeCalculatorService_returnsMerit_whenPassed89() {
 String mark = gradesClass.getClassification(89); // Act
 assertEquals("merit", mark);
 }

 // Testing Distinction
 @Test
 void testGradeCalculatorService_returnsDistinction_whenPassed90() {
 String mark = gradesClass.getClassification(90); // Act
 assertEquals("distinction", mark);
 }
 @Test
 void testGradeCalculatorService_returnsDistinction_whenPassed100() {
 String mark = gradesClass.getClassification(100); // Act
 assertEquals("distinction", mark);
 }

 // Testing null
 @Test

 9

 void testGradeCalculatorService_returnsNull_whenPassedminus20() {
 String mark = gradesClass.getClassification(-20); // Act
 assertNull(mark);
 }
 @Test
 void testGradeCalculatorService_returnsNull_whenPassed120() {
 String mark = gradesClass.getClassification(120); // Act
 assertNull(mark);

}
}

 Mockito

2.3.1. Overview
When testing in JUnit we test methods which return values. If we have methods which
have a return type of void then we cannot use JUnit to test these methods. Instead,
we can use Mockito.

Mocks let us test for interactions between components. Mockito uses mock objects.
Mock objects mimic the behaviour of real objects. When we test using Mockito we
test one class at a time. NEVER mock the class under test.

2.3.2. Verification (How Mockito Works)

Verification is the foundation of testing in Mockito. We can test methods which
return void, checking they are being called the correct number of times. We can check
that a method is called on a mock object, how many times it is called and what
arguments are being passed to it.

Using Verification

Lets imagine we have the following program code:

mockObject.myMethod("one");

We can verify this is being called the correct number of times using the following code:

verify(mockObject, times(1)).myMethod("one");

Lets look at the separate parts:

• The verify method is in the Mockito framework

• The variable mockObject is the mock object you created

• times(1) allows you to check how many times myMethod has been called. Here
we are checking it was called once.

• The method times(..) is in the Mockito framework.

• times(3) means the test expects the method to be called 3 times.

 10

2.3.3. Mockito Example

Basket.java

import java.util.List;

public interface Basket {

 List<Book> getBooksInBasket();

 void addBook(Book book);

 void removebook(Book book);
}

Book.java

public class Book {

 private double price;

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 this.price = price;
 }

}

Checkout.java

import java.util.List;

public class Checkout {

 public double calculatePrice(Basket basket) {
 List<Book> books = basket.getBooksInBasket();

 double total = 0;

 for (Book book : books) {
 total += book.getPrice();
 }

 return total;
 }

 public void emptyBasket(Basket basket) {
 List<Book> books = basket.getBooksInBasket();

 for (Book book : books) {
 basket.removebook(book);
 }

 }

}

CheckoutTest.java

import static org.junit.jupiter.api.Assertions.*;

 11

import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import static org.mockito.Mockito.*;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

@ExtendWith(MockitoExtension.class) // creates mock objects for everything marked @Mock
class TestCheckout {

 // The class we're testing is the only real object in the whole testcase
 Checkout checkout;

 // All other objects are mock objects:
 @Mock
 Basket mockBasket;

 @Mock
 Book mockBook1, mockBook2, mockBook3;

 @BeforeEach
 void setUp() throws Exception {
 checkout = new Checkout();
 }

 @Test
 void test_calculatePrice_callsMockBaskets_getBooksInBasketMethod() {
 checkout.calculatePrice(mockBasket); // We don't care about the return value!

 verify(mockBasket).getBooksInBasket(); // passes if getBooksInBasket was called
 }

 @Test
 void test_calculatePrice_returns20point75WhenBooksCosting9point5and11point25Passed() {
 when(mockBook1.getPrice()).thenReturn(9.5);
 when(mockBook2.getPrice()).thenReturn(11.25);
 List<Book> mockBooks = new ArrayList<>(Arrays.asList(mockBook1,mockBook2));
 when(mockBasket.getBooksInBasket()).thenReturn(mockBooks);

 double total = checkout.calculatePrice(mockBasket); // Act
 assertEquals(20.75,total); // Assert
 }

 @Test
 void test_calculatePrice_returns25WhenBooksCosting9pnt5_11pnt25_pnt25PassedIn() {
 when(mockBook1.getPrice()).thenReturn(9.5);
 when(mockBook2.getPrice()).thenReturn(11.25);
 when(mockBook3.getPrice()).thenReturn(4.25);
 List<Book> mockBooks = new

ArrayList<>(Arrays.asList(mockBook1,mockBook2,mockBook3));
 when(mockBasket.getBooksInBasket()).thenReturn(mockBooks);

 double total = checkout.calculatePrice(mockBasket); // Act
 assertEquals(25.0,total); // Assert
 }

 @Test
 void test_emptyBasket_callsRemoveBook2Times_whenBasketWith2BooksPassedIn() {
 List<Book> mockBooks = new ArrayList<>(Arrays.asList(mockBook1,mockBook2));
 when(mockBasket.getBooksInBasket()).thenReturn(mockBooks);

 12

 checkout.emptyBasket(mockBasket);
 verify(mockBasket,times(2)).removebook(any(Book.class)); // passes if remove

book is called twice
 }

 @Test
 void test_emptyBasket_callsRemoveBook3Times_whenBasketWith3BooksPassedIn() {
 List<Book> mockBooks = new

ArrayList<>(Arrays.asList(mockBook1,mockBook2,mockBook3));
 when(mockBasket.getBooksInBasket()).thenReturn(mockBooks);
 checkout.emptyBasket(mockBasket);
 verify(mockBasket,times(3)).removebook(any(Book.class)); // passes if remove

book is called three times
 }

}

 13

3. Exceptions (Try… Catch)

 Overview
When executing Java code, different errors can occur such as coding errors made by
the programmer, errors due to wrong input, or other unforeseeable things.

When an error occurs, Java will normally stop and generate an error message. The
technical term for this is: Java will throw an exception (throw an error).

 Try and Catch

The try statement allows you to define a block of code to be tested for errors while it

is being executed. The catch statement allows you to define a block of code to be

executed if an error occurs in the try block. The try and catch keywords come in pairs:

Try and Catch Syntax:

 try {
 // Block of code to try
 }
 catch(Exception e) {
 // Block of code to handle errors
 }

Example of Error Catching:

public class Runner {

 public static void main(String[] args) {

 try {
 int[] myNumbers = {1, 2, 3};
 System.out.println(myNumbers[10]);
 }

catch (Exception e) {
 System.out.println("Something went wrong.");
 }

 }

}

This will generate
an error, because
myNumbers[10]
does not exist.

Now the output will be:
‘Something went
wrong.’

As opposed to the
generic error message.

 14

 Finally

The finally statement lets you execute code after try...catch, regardless of the result:

Example of using Finally:

public class Runner {

 public static void main(String[] args) {

 try {
 int[] myNumbers = {1, 2, 3};
 System.out.println(myNumbers[10]);
 } catch (Exception e) {
 System.out.println("Something went wrong.");
 } finally {
 System.out.println("The 'try catch' is finished.");
 }

 }

}

 Throw

The throw statement allows you to create a custom error (red error message). The

throw statement is used together with an exception type.

There are many exception types available in Java: ArithmeticException,

FileNotFoundException, SecurityException, etc:

Example of using Throw:

public class Runner {

 static void checkAge(int age) {

 if (age < 18) {

throw new ArithmeticException("Access denied - You must be at least 18
years old.");

 }
 else {
 System.out.println("Access granted - You are old

enough!");
 }

 }

 public static void main(String[] args) {

 checkAge(15); // Set age to 15 (which is below 18...)

Now the output will be:
‘Something went wrong.’
‘The ‘try catch’ is finished.’

Now the output will be:
Exception in thread “main”
java.lang.ArithmeticException:
Access denied – You must be
at least 18…

 15

 }

}
Extra notes

 Multiple catch blocks and their order:

try{

//code which might cause an exception

} catch(FileNotFoundException fnfe){
 // catch the exception and deal with it
 fnfe.printStackTrace();

} catch(IOException ioe){

// catch the exception and deal with it

} catch(SQLException sqle){
 // sql problem

} catch(Exception e){
 // BAD PRACTICE (too general)

} finally{
 // clean up resources (such as releasing connections)

}

Multiple catch blocks allow us to deal with different exceptions in different ways.

 Stack Trace:

try{
 openFile("C:\\ade.txt");
} catch(IOException ioe){
 ioe.printStackTrace();
}

 Hierarchy:

Throwable

Error Exception

RuntimeException
(bad coding practices like divide by 0)

Non Runtime Exceptions
(caused by circumstances)

 Throw vs Throws:
public vo id openFile(String filename) throws IOException{ // MIGHT raise exception

 if(....){

If the two exception classes
are not inherited from another
then the order is not
problematic.

FileNotFoundException inherits
from IOException, therefore must
go before IOException in the
order.

Specific Exceptions @ Top
General Exceptions @ Bottom

printStackTrace(); → useful tool for
diagnosing an exceptions. It tells you
what happened and where in the code
this happened.
.

 16

 throw new IOException(); // generates the exception
 }
}

Throws=used to declare an exception, which means it works similar to the try-catch
block.
Throw=used to throw an exception explicitly.

 17

4. Classes & Abstract Classes

 Concrete Classes

Java is an object-oriented programming language. Everything in Java is
associated with classes and objects, along with its attributes (variables) and methods.
For example: a car is an object. The car has attributes, such as weight and colour,
and methods, such as drive and brake. A Class is like an object constructor, or a
"blueprint" for creating objects. To create a class, use the keyword class:

Creating a Class:

package com.fdmgroup.newPackage;

public class Car {

 // Attributes
 String companyName;
 String modelName;
 int year;
 int weight;
 String colour;

 // Behaviours/Methods (Functions)
 public void drive() {
 System.out.println("Car is driving.");
 }

 public void brake() {
 System.out.println("Car is braking.");
 }
}

In Java, an object is created from a class. We have already created the class

named Car, so now we can use this to create objects. To create an object of Car,
specify the class name, followed by the object name, and use the keyword new.

Creating an Object:

package com.fdmgroup.newPackage;
public class Runner {
 public static void main (String[] args) {

 Car car1 = new Car(); // Empty Object 1
 Car car2 = new Car(); // Empty Object 2
 Car car3 = new Car(); // Empty Object 3

 // Adding Attributes to Object 1
 car1.companyName = "Ford";
 car1.modelName = "Fiesta";
 car1.year = 2013;

Think of this as the data type.

Object name

Creating the empty
object by calling the
class

 18

 car1.weight = 1200;
 car1.colour = "White";

 // Calling the drive() method from the Car class for Object 1
 car1.drive();

 Constructors

Creating a new object using the approach in the example above can be repetitive if
you have multiple objects. We can create a custom constructor in the class, to
initialise an objects attributes.

Creating a Constructor:

package com.fdmgroup.newPackage;

public class Car {

 // Attributes (Variables & Constants)
 String companyName;
 String modelName;
 int year;
 int price;
 int weight;
 String colour;

 // Constructor
 public Car(String companyName, String modelName, int year, int p rice, int weight,
String colour) {
 super();
 this.companyName = companyName;
 this.modelName = modelName;
 this.year = year;
 this.price = price;
 this.weight = weight;
 this.colour = colour;
 }

 // Behaviours/Methods (Functions)
 public void drive() {
 System.out.println("Car is driving.");
 }

 public void brake() {
 System.out.println("Car is braking.");
 }

}

Creating an Object (after constructor added):

package com.fdmgroup.newPackage;

The format for creating an
object for Car is similar to the
one for creating ArrayList.

All objects follow this format.

 19

public class Runner {

 public static void main (String[] args) {

 Car car1 = new Car("Ford", "Fiesta", 2013, 5000, 1200, "White");

 System.out.println(car1.modelName);

 }

}

Data abstraction is the process of hiding certain details and showing only
essential information to the user. Abstraction can be achieved with either abstract
classes or interfaces.

 Abstract Classes & Methods

The abstract keyword is a non-access modifier, used for classes and methods:

• Abstract class: is a restricted class that cannot be used to create objects (to
access it, it must be inherited from another class).

• Abstract method: can only be used in an abstract class, and it does not have a
body. The body is provided by the subclass (inherited from).

Why and when to use Abstract Classes and Methods? To achieve security - hide
certain details and only show the important details of an object.

Creating an abstract class (with both abstract and regular methods):

Animal.java:

public abstract class Animal {

 // Abstract method (no body)
 public abstract void animalSound();

 // Regular method
 public void sleep() {
 System.out.println("ZzzZzzZZzz");
 }

}

Accessing an abstract class and overriding the abstract method:

Dog.java:

public class Dog extends Animal {

 @Override

 20

 public void animalSound() {

 // The body of animalSound() is provided here
 System.out.println("The dog says: woof woof");
 }

}

Runner.java:

public class Runner {

 public static void main(String[] args) {

 // Creating objects

// Cannot create "Animal myAnimal = new Animal();" object from abstract class
 Animal myDog = new Dog();

// Calling the overridden abstract method and regular method from child class.
 myDog.animalSound();
 myDog.sleep();

 }
}

 Interfaces

Another way to achieve abstraction in Java, is with interfaces. An interface is a
completely "abstract class" that is used to group related methods with empty
bodies:

Creating an Interface Example:

interface Animal {

 // interface methods (no body)
 public void animalSound();
 public void run();

}

To access the interface methods, the interface must be "implemented" (similar to
inherited) by another class with the implements keyword (instead of extends). The body

of the interface method is provided by the "implement" class:

 21

Implementing an Interface Example:

// Interface
interface Animal {

 // interface method (does not have a body)
 public void animalSound();
 public void sleep();

}

// Bird "implements" the Animal interface
class Bird implements Animal {

 public void animalSound() {
 // The body of animalSound() is provided here
 System.out.println("The bird says: tweet tweet");
}

 public void sleep() {
 // The body of sleep() is provided here
 System.out.println("Zzz");
 }
}

// Main method
class Main {

 public static void main(String[] args) {
 // Create a Bird object
 Bird myBird = new Bird();
 myBird.animalSound();
 myBird.sleep();
 }
}

Why and when to use Interfaces?
1) To achieve security - hide certain details and only show the important details of an
object (interface).
2) Java does not support "multiple inheritance" (a class can only inherit from one
superclass). However, it can be achieved with interfaces because the class

can implement multiple interfaces.

Multiple Interfaces:

interface FirstInterface {
public void myMethod(); // interface method

}

interface SecondInterface {

public void myOtherMethod(); // interface method

 22

}

class DemoClass implements FirstInterface, SecondInterface {

public void myMethod() {
System.out.println("Some text..");

}
 public void myOtherMethod() {
 System.out.println("Some other text...");

}
}

class Main {

public static void main(String[] args) {
DemoClass myObj = new DemoClass();
myObj.myMethod();
myObj.myOtherMethod();
}

}

NOTE:
Interfaces cannot be used to create objects. Interface methods do not have a body.
On implementation of an interface, you must override all of its methods. Interface
methods are by default abstract and public. Interface attributes are by
default public, static and final. An interface cannot contain a constructor.

 Overriding Methods
This is when code in the child class method completely replaces the code from
the parent class method that it overrides.

For example, think of a superclass called Animal that has a method called
animalSound(). Subclasses of Animals could be Cats, Dogs, Birds etc. – and they also
have their own implementation of an animal sound (cat meows, dog barks, etc.):

Animal.java

public class Animal {

 public void animalSound() {
 System.out.println("The animal makes a sound");
 }

}

Dog.java

public class Dog extends Animal {

 public void animalSound() {
 System.out.println("The dog says: woof woof");
 }

To implement multiple
interfaces, separate them
with a comma

Use extends keyword
to inherit from a class

 23

}

Cat.java

public class Cat extends Animal {

 @Override

public void animalSound() {
 System.out.println("The cat says: meow");
 }

}

Runner.java

public class Runner {

 public static void main(String[] args) {

 // Creating objects
 Animal myAnimal = new Animal();
 Animal myDog = new Dog();
 Animal myCat = new Cat();

 // Calling the same method() for each class.
 myAnimal.animalSound();
 myDog.animalSound();
 myCat.animalSound();

NOTE:

• To access a method from the parent class (that has been overridden in the child
class), we must use the super keyword (as shown in 7.1.1 Super keyword

section).

• Using the final keyword in a method header will prevent the method from being

overridden in any child classes (if final already stated in class header, then no

need for final in method header).

• Overriding the equals() and hashcode() methods is sometimes necessary to

ensure they behave as ‘expected’ when comparing objects. Eclipse has a built-
in option to enable this feature.

 Overloading

This is when a class has multiple methods with the same name but with different
arguments. Each version of the method will have slightly different functionality. The
version called depends on the arguments passed in.

Overloading Method Example:

public class Car {
 public void accelerate() {}

Can add @Override
annotation to check
method is being
overridden.

Each print out
different statements!

accelerate(40) will call
the first method
accelerate(2.5) will call
the second method

 24

 public void accelerate(int speedLimit) {}

 public void accelerate(double hillGradient) {}
}

Overloading Constructors:

public class Car {

 public Car() {}

 public Car(String model) {}
}

Horizontal Constructor Chaining:

public class Car {

 public Car(int maxSpeed){
 // code to check maxSpeed is valid number
 }

 public Car(int maxSpeed, String model) {
 this(maxSpeed);
 this.model = model;
 }

}

A car object can now be
created by calling either
constructor:
Car car1 = new Car();
Car car2 = new Car(“Tesla”);

Arguments passed to a
different constructor in the
same class using this().

this() used to avoid code
duplication (instead of
copying code from first
constructor again)

 25

 Super and this

this. calls a variable or method in this class from anywhere in this class
this() calls a constructor in this class but you must call it inside a constructor

class BankAccount{

int accountNumber;
String accountName;
double balance;

 BankAccount(int accountNumber, String accountName, double balance){
 // 3 in the full way
 }

 BankAccount(int accountNumber, String accountName){
 this(accountNumber, accountName, 0.0);

 in a constructor, the first statement must be EITHER super(.....); or this(......);
 super(); // implicit call to super()
 }

}

super. calls a variable or method in the super class
super() calls a constructor of the super class

5. The 4 Pillars of OOD (Arsalaan)

 Pillar 1:
Abstraction: Extracting the relevant information for the required task.

 Pillar 2:
Polymorphism: "Many forms"

e.g many ways to create a ‘vehicle’ object:

Vehicle vehicle = new Car();
..
vehicle = new Lorry();

Overloading (compile time) v Overriding (run time) polymorphism
Overloading = class has multiple methods with the same name but with different
arguments. Each version of the method will have slightly different functionality.
e.g.
Car(){}

 26

Car(int engineSize, int mpg){}

NOTE: The code Car car = new Car(); would know at compile time which version was

being called

Overriding = code in the child class method completely replaces the code from the
parent class method that it overrides:

e.g.
Vehicle class: public void drive()
Car class: public void drive()

NOTE: The code car.drive(); would know at runtime which version was being called

 Pillar 3:
Inheritance: inheriting a class or implementing an interface.

 Pillar 4:
Encapsulation: grouping logically related things, member variables together.

 27

6. JDBC (Java database connectivity, Java+SQL) [Amanda]

 Background & Setup:
JDBC is an API (application programming interface) ("a library of code") for Java that
defines how a client can access a database / enables Java applications to interact with
databases.

• Need to set up connections and code ourselves.

• Need to add dependency to pom.xml to download (h2) jar file into project.

Persistence = saving data permanently

• Persistence vs collections (ArrayLists, etc.): data in collections is removed
when program exits so all objects are lost from memory, persist stores data to
database.

• Advantage of database: portable (can send to other computers), there is vast
storage space, quicker to query.

DriverManager = the only concrete class, use to install/set up a vendor specific
driver (e.g. h2, oracle) and get a Connection object.

• New org.h2.Driver ⇒ "use h2 as database type" (pointing to class that looks

after database).

• Need to set up JDBC: database vendor (h2), database location URL
(~/connectionName) and Username+Password (sa, blank password).

//what to use to connect to database
DriverManager.registerDriver(new org.h2.Driver);

//get connection to database
Connection connection=DriverManager.getConnection("jdbc:h2:~

/connectionName","sa","");

 JDBC Interfaces

6.2.1. Connection:
used to set up a connection between Java application and database. Vendor specific
(we specified h2).

o Set using DriverManager:
Connection connection =

DriverManager.getConnection(connectionURL);

o remember to do connection.close() when finished!

6.2.2. Statement:
used to send SQL statements to database via queries (interact via connection)

o Created from connection object:
Statement statement = connection.createStatement();

statement.execute(s): CREATE/DROP/ALTER (change table structure), returns

boolean (worked or not)
e.g. s = "DROP table tester IF EXISTS" or "CREATE table tester(mynum

number(6), myname varchar2(20))"

 28

statement.executeUpdate(s): INSERT/DELETE/UPDATE (change data in

table), returns int (number of rows affect by query)
e.g. s = "INSERT INTO test(mynum, myname) VALUES (1, 'Amanda')"
- NOTE SINGLE QUOTE MARKS

statement.executeUpdate("commit"); to enter data and save changes

statement.executeQuery(s): SELECT query, returns ResultSet object

e.g. s = "SELECT mynum, myname FROM tester"

6.2.3. ResultSet:
a table of data/results from database. Use SELECT statement

ResultSet resultSet = statement.executeQuery("SELECT myname,

mynum FROM tester");

while(resultSet.next(){

int mynumber=resultSet.getInt("mynumber") ;

String myname = resultSet.getString("myname");

System.out.print("" + mynumber+"," + myname);

}

o resultSet.next(): iterate through resultSet row by row (initially

starting at nothing, then row 1), boolean → true if row has data.
o resultSet.getInt(), .getString(): getter methods to get data

from row. Take column name or column index (start at 1).

NOTICE: HE SAID IN THE REVISON VIDEO HE MIGHT GET US TO WRITE 5-
9LINES OF CODE SOMETHING LIKE SETTING UP RESULTSET, SHORT CODE
SAMPLE

6.2.4. PreparedStatements (extends Statement):
write SQL code with ? placeholder for missing parameter values

• Safer alternative to statement objects.
o Problem with Statement objects: the structure means if you want to put

in some dynamic values, you need to switch between SQL and Java
variables, so can be prone to error and SQL injection (hacking -
someone can forcefully insert their own code).

//switching between SQL and Java variables (brokerId, firstName)
statement.executeQuery("Select brokerId, firstName from brokers

where brokerId ="+brokerId+" and firstName=" + firstName);

//more complex when needed to use single quotes for varchar2 types
(here brokerId is a String)
statement.executeQuery("Select * from brokers where brokerId='

"+brokerId+" ' ");

//prepared statement example
PreparedStatement ps = connection.prepareStatement("DELETE FROM

brokers WHERE id = ? and name = ?");

ps.setInt(1, id); //set for first ?

 29

ps.setString(2, name); //set for second ?
ps.executeUpdate();

//another example
PreparedStatement preparedStatement = connection.

prepareStatement("Select ... from brokers where brokerId = ?

and firstName = ?");

preparedStatement.setInt(1, brokerId);

//.setDataType (int), position number of ? (1), value (brokerId)
preparedStatement.setString(2, firstName);

ResultSet resultSet = preparedStatement.executeQuery();

//using excuteQuery because it's a SELECT statement
// .. can do a while loop here to print resultSet in console

6.2.5. JDBC Example Code

//possible sqlException, may be a problem with h2 database, surround with try-catch..

try {

DriverManager.registerDriver(new org.h2.Driver());

Connection connection = DriverManager.getConnection(

"jdbc:h2:~/connectionName", "sa", "");

Statement statement = connection.createStatement();

statement.execute("DROP TABLE BROKERS IF EXISTS;");

statement.execute("CREATE TABLE BROKERS(brokerId NUMBER(6),

firstName VARCHAR2(20), lastName VARCHAR2(20));");

statement.executeUpdate("INSERT INTO BROKERS(brokerId,

firstName, lastName) VALUES(1,'Hi', 'Everyone');");

statement.executeUpdate("COMMIT");

ResultSet resultSet = statement.executeQuery("SELECT * FROM

BROKERS");

while (resultSet.next()) {

int brokerId = resultSet.getInt("brokerId");

String firstName = resultSet.getString("firstName");

String lastName = resultSet.getString("lastName");

System.out.println(brokerId+", "+firstName+", "+lastName);

}

//close connection. Best practice to close when something has been opened.

connection.close();

} catch (SQLException e) {

e.printStackTrace();

}

 30

6.2.6. CallableStatement (extends PreparedStatement):
not supported by h2, used for Stored procedures, good for separating Java + SQL
code.

6.2.7. StoredProcedure:
SQL code that you can save, so the code can be reused over and over again, just call
it to execute it.

//stored procedure is "AddAUser", compile it first, then call it.
CallableStatement callableStatement =

connection.prepareCall("{call AddAUser(?,?,?)}"); //3 missing

values
callableStatement.setInt(1, 1); //same as prepared statements
callableStatement.setString(2, "London");

callableStatement.setString(3, "Bridge");

callableStatement.executeUpdate(); //OR
ResultSet resultSet = callableStatement.executeQuery();

 31

7. JPA (Java+Databases) (Jack)

7.1.1. Background

JPA Java Persistence API
• It is an Object Relational Mapping tool: ORM

• It maps Java Entities to SQL tables, so you don’t have to write any SQL.

• Everything can be done in Java and hosted on the Java tier

• JPA improves upon JDBC Framework

• Centralizes all the connection details, login details into a persistence file,

persistence.xml

• JPQL is a database independent language where you can write some code to

query the database

It uses the EntityManager class to perform operations:
Remember to set EntityManagerFactory and EntityManager:
EntityManagerFactory entityManagerFactory = Persistence.createEntityManagerFactory("project");
EntityManager entityManager = entityManagerFactory.createEntityManager();

 Methods:

7.2.1. find:
Looks up one object, using primary key:
public void addCustomer(Customer customer) {
Customer customerInDB = entityManager.find(Customer.class, customer.getUsername());

7.2.2. persist:
Saves a row to the database, after constructing object:
entityManager.persist(customer);

7.2.3. merge:
foreign key involved: BankAccount using FK from customer:
public void updateBankAccount(BankAccount newBankAccount) {
BankAccount accountInDB = entityManager.find(BankAccount.class, newBankAccount.getBankId());
EntityTransaction entityTransaction = entityManager.getTransaction();
entityTransaction.begin();
if (accountInDB == null) {
} else {
entityManager.merge(newBankAccount);
}
entityTransaction.commit();

7.2.4. remove:

Fully remove object from database:
public void removeBankAccount(int bankId) {
BankAccount accountInDB = entityManager.find(BankAccount.class, bankId);
EntityTransaction entityTransaction = entityManager.getTransaction();
entityTransaction.begin();

 32

if (accountInDB == null) {
} else {
entityManager.remove(accountInDB);
}
entityTransaction.commit();

7.2.5. Typed Query:
TypedQuery<User> query = entityManager.createQuery(JPQL, User.class);
List<User> listUsers = query.getResultList(); provides list of users from database

Query query = entityManager.createNativeQuery(SQL) not recommended to use SQL

List<Object[]> List of object arrays - TypedQuery is a better method

This means you use Java methods to achieve database functions: select, update, insert

7.2.6. Annotations:

@Entity : Becomes table in database : @Entity(name=”SC_CUSTOMERS”) – Table Name
public class Customer {

@Id – Primary Key – Requires 1 per Entity
@ManyToOne – Easiest Foreign Key implementation

7.2.7. EntityManager & begin() commit()

EntityManagerFactory Used to create EntityManager

EntityTransaction begin() / commit() Change any data in the database :

begin() before you start to make any changes
commit() to save any changes

 33

8. Servlet (Charlie)

8.1.1. Background & Old Methods:
Original methods and motivation for using Servlets

The most important methods for using a Servlet are doGet and doPost, they both have
input of

doGet(HttpServletRequest request, HttpServletResponse response)

These allow it to obtain information from the request and to formulate a response.
These methods are called from a .jsp page using the following tags:

<FORM action ="...." method="GET">

In most cases it is better to use POST as doGet sends the parameters through the
address bar.

Majority of the time we will use request over response, request allows us to access
information from the page and set attributes. Our most common use was:

request.getParameter("username");
request.getSession();

Redundant way of outputting to the screen

When we were very first working with webpages we used PrintWriter out =
response.getWriter();

But this was very tedious as this is only useful for displaying information through Sys-
out statements. We realised its much preferable to send the client to a new .jsp page.

8.1.2. Website States: Keeping information about the user

HTTP itself is stateless by default, which means it doesn’t remember what has come
before it.

This is where sessions come in handy. Session is a state management system stored
on the server side. Cookies are a state management system stored on the client side.

For instance, we would want to store the username and basket in the session as this
is personal to the user and allows us to customise pages accordingly.
HttpSession session = request.getSession();
session.setAttribute("username", username);

This is how we would control the session. To kill a session we simply use:
session.invalidate();

This kills the session which would be useful for a logout feature as the information
about the user is forgotten.

 34

RequestScope – Short term (between pages loading usually), HttpSession –
medium length for the duration of the session and ServletContext- long term lasts
until the server is restarted.

Informaton from ServletContext is global everyone can see it.

Typical use for it would be on a forum where you wish to see active users. Where it
can then display a list of active users.

8.1.3. Lifecycle of a request made to a server:

8.1.4. Lifecycle of a servlet: (Wouldn’t normally see)
init() - the servlet is initialised
service() - this is the most called function determines whether it is a doGet or doPost
call.
destroy() - terminates the servlet (who woulda thunk it) :)

 35

9. JSP (Java + HTML) (Daya)

 JSP Overview

JavaServer Pages (JSP) is a technology for developing Webpages that supports dynamic content. This

allows developers to embed java code in HTML pages by using specific JSP tags, the majority of which

begin with <% and end with %>. A JavaServer Pages component is a type of Java servlet that acts as

the user interface for a Java web application. JSPs can be written as text files that contain HTML as

well as embedded JSP actions and commands.

JSP tags can be used for a variety of things, including retrieving data from a database or registering

user preferences, passing control between pages, and sharing data between requests, pages, and so

on.

 JSP directive

The general structure of the servlet class is affected by a JSP directive. It's usually written like this:

Directive
<%@page%> Defines page-dependent attributes, such as

scripting language, error page, and buffering
requirements.

<%@include%> Includes a file during the translation phase.

<%@taglib%> Declares a tag library, containing custom
actions, used in the page

The page directive is used to provide instructions to the container. These instructions pertain to the

current JSP page. You may code page directives anywhere in your JSP page. By convention, page

directives are coded at the top of the JSP page. Following is the basic syntax of the page directive:

<%@page attribute=”errorPage”%> // errorPage attribute defines the URL of another JSP that reports
on Java unchecked runtime exceptions.

During the translation step, the include directive is used to include a file. During the translation

process, this directive instructs the container to merge the content of other external files with the

current JSP. Include directives can be placed anywhere in your JSP page.

The include directive's filename is actually a relative URL. The JSP compiler assumes that the file is in

the same directory as your JSP if you just supply a filename without a path.

<%@include file="header.jsp" %>

The JavaServer Pages API allows you to define custom JSP tags that look like HTML or XML tags and a

tag library is a set of user-defined tags that implement custom behaviour.

The taglib directive states that your JSP page utilises a set of custom tags, specifies the library's

location, and allows you to find the custom tags in your JSP page.

 36

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core"%
>
<%@ taglib prefix="s"
uri="http://www.springframework.org/tags
"%>
<%@ taglib prefix="sf"
uri="http://www.springframework.org/tags
/form"%>

 Expression language

JSP Expression Language makes it possible to easily access application data stored in JavaBeans

components. JSP Expression Language allows you to create expressions both (a) arithmetic and (b)

logical. Within a JSP Expression Language expression, you can use integers, floating point numbers,

strings, the built-in constants true and false for boolean values, and null.

Null values are not displayed in the webpage.

By using the code below in the controller

request.setAttribute("message", "Must
include a capital letter !");

You can store a variable called message and use it in a .jsp file.

${requestScope.message}

Implicit object Description

pageScope Scoped variables from page scope

requestScope Scoped variables from request scope

sessionScope Scoped variables from session scope

applicationScope Scoped variables from application scope

pageContext The JSP PageContext object for the current
page

 37

The pageScope, requestScope, sessionScope, and applicationScope variables provide access to

variables stored at each scope level.

The pageContext object gives you access to the pageContext JSP object. Through the pageContext

object, you can access the request object.

${pageContext.request.contextPath}

 declaration
<%! %> not very useful

A declaration declares one or more variables or methods that you can use in Java code later in the JSP

file. You must declare the variable or method before you use it in the JSP file.

<%! int i = 0; %>
<%! int a, b, c; %>
 <%! Circle a = new Circle(2.0); %>

 scriptlet
<% %> messy

A scriptlet can contain any number of JAVA language statements, variable or method declarations, or

expressions that are valid in the page scripting language.

<html>
<head>
 <title>Hello World</title>
</head>
<body>
 Hello World!

 <% out.println("Hello World”)); %>
</body>
</html>

 expression
<%= %> use EL

A JSP expression element contains a scripting language expression that is evaluated, converted to a

String, and inserted where the expression appears in the JSP file.

Very similar to Expression Language but if the value is null, it will display null.

 38

 lifecycle:
When a browser asks for a JSP, the JSP engine first checks to see whether it needs to compile the page.

If the page has never been compiled, or if the JSP has been modified since it was last compiled, the

JSP engine compiles the page.

when we change the JSP: all 7 steps take place:

1. translate JSP to servlet (All the JSP file content gets turned into out.print and out.write for various

values.)

2. compile that servlet to a .class (same as normal java file)

3. load into memory (same as normal java file)

4. instantiate: create an instance of the class (same as normal java file)

If the JSP stays the same:

5. jspInit()

When a container loads a JSP it invokes the jspInit() method before servicing any requests.

Initialization is performed only once and as with the servlet init method, you generally initialize

database connections, open files, and create lookup tables in the jspInit method.

6. jspService()

Whenever a browser requests a JSP and the page has been loaded and initialized, the JSP engine

invokes the _jspService() method in the JSP.

The jspService() method of a JSP is invoked on request basis. This is responsible for generating the

response for that request and this method is also responsible for generating responses to all seven of

the HTTP methods, i.e., GET, POST, DELETE, etc.

7. jspDestroy()

JSP is being removed from use by a container, the jspDestroy() method is the JSP equivalent of the

destroy method for servlets.

 JSTL tags

<c:if >

The <c:if > tag evaluates an expression and displays its body content only if the expression evaluates

to true.

<c:set var="salary" scope="session" value="${2000*2}"/>
<c:if test="${salary > 2000}">
 <p>My salary is: <c:out value="${salary}"/><p>
</c:if>

 39

<c:choose >, <c:when >, <c:otherwise >

The works like a Java switch statement in that it lets you choose between a number of alternatives.

<c:choose>
<c:when test="${salary <= 0}">
 ……….
</c:when>
<c:when test="${salary > 1000}">
 ……...
</c:when>
<c:otherwise>
 ………
</c:other>
</c:choose>

<c:out >

The <c:out> tag is used to show the result of an expression. This is almost similar to the way <%= %>

works. The distinction is that the <c:out> tag allows you to access properties using the simpler "."

notation. For example, to access customer.address.street, use the tag <c:out

value="customer.address.street"/>.

<c:out value="£ ${eachProduct.price}" />

<c:forEach >

<c:forEach> tags are similar to Java for, while, or do-while loop via a scriptlet. The tag is a commonly

used tag because it iterates over a collection of objects.

<c:forEach var="eachProduct" items="${listOfProducts}">
 <TR><TD class="tabledata">
 <c:out value="${eachProduct.productName}" /> </TD>
 <TD class="tabledata"> <c:out value="£ ${eachProduct.price}" /> </TD>
 <td class="tabledata">
<sf:form
action="${pageContext.request.contextPath}/addProductToBasket/${eachProduct.prod
uctID}">
 <input type="submit" name="commit" value="add" />
 </sf:form>
 </td>
 </TR>
</c:forEach>

 JSTL Benefits

1. Scriptlets are very messy and very hard to debug. Using JSTL avoids these messy scriptlets. Java and

embedded HTML is not very readable

2. Web designers and web developers can make changes to a file containing JSTL.

Web designers will not recognize Java so cant fix scriptlets

Web developers might be too familiar with HTML

 40

10. Memory (Mo)

 Example of pass-by-value language
- Java is a pass by value language
- Litmus test is done to check if a language is a pass by value or pass by reference
language.

void swap(int first, int second){

int temp = first;
 first =second;
 second=temp;
}

int firstNumber=1;
int secondNumber=2;

swap(firstNumber,secondNumber);
 1 2

Swap method attempts to swap values around. However, it swaps the copies of the
variables passed in, locally. So, the outcome is that no swap has happened, and the
value of the variables would be the same.

Two types of memory

 Stack:
when you call a method anything declared in there is stored as a stack, once the
method is finished everything is cleared i.e., the stack is dismantled. If a new method
is called a new stack is created for that. Stack stores local variables primitives (ints,
floats, doubles etc) objective references and method references.

 Heap:
Only stores objects.

 Examples of Stack and Heap:
String str = new String(); new String() : the String object -> HEAP

 str : object reference -> STACK

str=null; you can do this to say that you’re finished with this variable. A

benefit is that the garbage collector knows that this variable Is
no long being used

str = new String();

 Number of stacks and heaps in Java
- There is only one heap per JVM(Java Virtual Machine)
- When you run a program in eclipse an environment is created (virtual machine)
only one heap per environment.
- There can be many stacks. (One stack per thread)

 41

 Stack overflow error & example
Main method: there is a stack
method1: there will be another stack
method2: there will be another stack

int factorial(int value){
 return value * factorial(value-1); // create so many local variables on the stack
}

This method uses recursion to multiply the value it starts with the factorial of the
number below. (value-1) Which means the method Is being called infinitely and there
is no exit. Goes into the negative numbers. The stack created would overflow giving
you a stack overflow error.

 Garbage collector
- Is responsible for the heap.
- When memory usage reaches 85-95% the garbage collector must pause the
program so it can clean out any objects that haven’t been used in a while or when
objects have been set to null.
- Garbage collection cannot be forced, it’s automatic with Java.

str=null; you can do this to say that you’re finished with this variable. A

benefit is that the garbage collector knows that this variable Is
no long being used

 42

11. Design Patterns (Will)

There are 23 different design patterns but only 6 we need to learn; Examples are
numbered and shown below. Patterns 4 &6 have no examples.

 1. Object Pool
• Pool or reusable objects

• e.g. library book return or connection pools

 2. Factory
• A class and a series of static methods. Methods in a factory class return an

object. E.g. The factory creates a trader;
o Trader trader = TheFactory.createATrader();

 3. Singleton
• Only one instance of class, good for when you want to use only certain methods

of class and not the whole thing; e.g. Math class

• Made up of 3 parts;
o Private static instance inside class
o Private no arg constructor (So cant create instance)
o Returns an instance of the class. If not exist create

 4. Adapter
• Allow 2 things to work that don’t usually work

• E.g. filesystem and printer needs to connect and parse info

 5. Command
• Like an adapter but split into 4 parts

• Command (thing being passed), receiver (entity that does the work), invoker
(doing calling) and client (receives output)

 6. Observer
• An object (aka subject) maintains a list of its dependents, called observers,

and notifies them automatically of any state changes.

• Behaves like an email list, updates are sent to all subscribes and never to
others.

1 public class ConnectionPool {
 private List<Connection> availableConnections = new ArrayList<Connection>();
 private int howManyConnections=0;

 // use a connection
 public Connection checkout() throws SQLException {
 howManyConnections++;
 return availableConnections.get(howManyConnections-1);
 }
 // return the connection
 public void checkin(Connection c) {
 howManyConnections--;
 }
}

2 public class TheFactory
{
 public static Trader createATrader() // Called using the code:
 { //SuperTrader superTrader = TheFactory.createASuperTrader();
 return new Trader();
 }
 public static SuperTrader createASuperTrader()

 43

 {
 return new SuperTrader();
 }

3 public class MySingleton {

 private static MySingleton ms;

 private MySingleton (){
 }

 public static MySingleton getInstance(){

 if(ms == null)
 {
 ms = new MySingleton();
 }
 return ms;
 }
}

5 // RECEIVER
class Chef {
 public void cookMeal() {
 System.out.println("The meal is ready");
 }
}
// COMMAND
class OrderSlip{
 private Chef chef;

 public OrderSlip(Chef chef) {
 this.chef = chef;
 }
 public void execute() {
 System.out.println("Asking chef to cook meal");
 chef.cookMeal();
 }
}
// INVOKER
class Waiter {
 public void takeInstruction(OrderSlip cmd) {
 System.out.println("Taking instruction");
 cmd.execute();
 }
}
public class RestaurantCustomer {
 public static void main(String[] args) {
 Chef chef = new Chef();
 OrderSlip orderSlip = new OrderSlip(chef);
 Waiter waiter = new Waiter();
 waiter.takeInstruction(orderSlip);
 }
}

 44

12. Threads (Ash)

A single sequence of tasks is a thread.

Threads allows a program to operate more efficiently by doing multiple things at
the same time. Threads can be used to perform complicated tasks in the background
without interrupting the main program.

 11.1 Benefits of Multi-threading

• A process split into 2 threads runs quicker than a single threaded process by
utilising the idle time of the cores which

• Increases responsiveness

• Performs background and foreground tasks

 11.2 Making threads

Extending the Thread class: A new class that extends Thread should contain a run()
method which overrides that of the parent class. Make an object of this class in the
runner.

Implementing the Runnable interface: When implementing Runnable, create an
instance of your class that implements Runnable. Insert this object into the constructor
of the thread object.

 11.3 Thread methods

• start(): alerts the thread scheduler that the thread is ready to compete for
processing time.

• run(): executes the thread.

• sleep(): pauses the thread for a pre-set amount of time which gives other
thread time to work meanwhile.

• join(): waits for another thread to terminate before it continues.

• interrupt(): terminates a thread.

These methods prevent a queue from overflowing.

 45

• wait(): a thread waits to be called upon.

• notify(): revives a random thread that is waiting.

• notifyAll(): wakes all the threads.

 11.4 Multi-threading Hazards and Solutions

Race Condition: The order in which threads execute affects the outcome so there is
a different result each time due to the processor switching between threads. Race
condition can be prevented by using locks or synchronization.

Synchronized methods prevent race condition as it allows only 1 method to work on
a variable at a time. Synchronized blocks are code contained within a method that
can only be executed by a single thread at a time. This should be an atomic
operation: extremely small so as not to hog the resource for a long time.

Re-entrant Locks give a thread different options for proceeding when a resource is
being used by another thread. Must use lock() and unlock() to prevent other methods
using at the same time and to allow access once available.

Re-entrant ReadWrite Locks allow access to multiple reading threads but only 1
writing thread at a time. Good for when threads are accessing but not modifying the
object.

12.4.1. 11.4.1 Hazards caused by locks and synchronization

Deadlock: Two threads have something the other wants therefore there’s no
progression. Solve this by ensuring the different threads acquire resources in the same
order so are not waiting infinitely for each other.

Livelock: when threads react to each other and are stuck in a continuous loop
preventing threads from progressing.

Starvation: A thread cannot proceed due to another thread hogging the resource and
not releasing it. Always remember to unlock() after using.

 46

13. Comparisons

There are many different sorting algorithms: quick sort, merge sort, tim sort, insertion
sort, selection sort, bubble sort. All sorting algorithms work by comparing pairs of
elements. Java chooses the most appropriate algorithm for the collection or array
which it is sorting.

However, Java must be told how to compare a pair of objects of a custom class.
Comparable and Comparator both are interfaces and can be used to sort collection
elements by defining the sorting order for custom classes. Below is an example of
trying to use Collections.sort on objects and as expected, it results in a compile-time

error.

Player.java

public class Player {

 // Attributes
 private int ranking;
 private String name;
 private int age;

 // Constructor
 public Player(int ranking, String name, int age) {
 this.ranking = ranking;
 this.name = name;
 this.age = age;
 }

 // Getters & Setters
 public int getRanking() {
 return ranking;
 }

 public void setRanking(int ranking) {
 this.ranking = ranking;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 47

 public void setAge(int age) {
 this.age = age;
 }

}

PlayerSorter.java

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class PlayerSorter {

 public static void main(String[] args) {

 // Empty footballTeam list
 List<Player> footballTeam = new ArrayList<>();

 // Creating players (objects)
 Player player1 = new Player(93, "Messi", 34);
 Player player2 = new Player(92, "Ronaldo", 36);
 Player player3 = new Player(90, "van Dijk", 30);
 Player player4 = new Player(91, "Oblak", 28);
 Player player5 = new Player(89, "Ramos", 35);

 // Adding players to 5-a-side footballTeam
 footballTeam.add(player1);
 footballTeam.add(player2);
 footballTeam.add(player3);
 footballTeam.add(player4);
 footballTeam.add(player5);

 // Printing out the footballTeam before sort
 System.out.println("Before sorting: ");
 for (Player player : footballTeam) {

 System.out.println(player.getRanking() + " " +
 player.getName() + " " +
 player.getAge());

 }

 Collections.sort(footballTeam);

 // Printing out the footballTeam after sort
 System.out.println("After sorting: ");
 for (Player player : footballTeam) {

 System.out.println(player.getRanking() + " " +

Compile error:
The method sort(List<T>) in
the type Collections is not
applicable for the
arguments (List<Player>)

 48

 player.getName() + " " +
 player.getAge());
 }

 }

}

 49

 Comparable

Comparable provides a single sorting sequence. In other words, we can sort the
collection on the basis of a single element such as id, name, and price.
Comparable affects the original class (the actual class is modified). Comparable
provides compareTo() method to sort elements.

Using compareTo() method via Comparable interface:

Player.java

public class Player implements Comparable<Player>{

 .
 .
 .
 .

 @Override
 public int compareTo(Player otherPlayer) {
 return Integer.compare(getRanking(), otherPlayer.getRanking());
 }

}

The sorting order is decided by the return value of the compareTo() method. The
Integer.compare(x, y) returns -1 if x is less than y, returns 0 if they're equal, and returns

1 otherwise.

 Comparator

The Comparator provides multiple sorting sequences. In other words, we can sort
the collection on the basis of multiple elements such as id, name, and price etc.
Comparator doesn't affect the original class (the actual class is not modified).
Comparator provides compare() method to sort elements.

Using compare() method via Comparator interface:

PlayerRankingComparator.java

import java.util.Comparator;

public class PlayerRankingComparator implements Comparator<Player>{

 @Override
 public int compare(Player firstPlayer, Player secondPlayer) {
 return Integer.compare(firstPlayer.getRanking(),
 secondPlayer.getRanking());
 }

}

Comparable interface
implemented +
@Override
compareTo() method
added to original
Player.java

When PlayerSorter.java was run,
the footballTeam was sorted
from lowest to highest ranking.

 50

PlayerAgeComparator.java:

import java.util.Comparator;

public class PlayerRankingComparator implements Comparator<Player>{

 @Override
 public int compare(Player firstPlayer, Player secondPlayer) {
 return Integer.compare(firstPlayer.getRanking(),
 secondPlayer.getRanking());
 }

}

PlayerSorter.java:

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class PlayerSorter {

 public static void main(String[] args) {

 // Sort by Ranking (Ascending)
 PlayerRankingComparator playerComparator1 = new

PlayerRankingComparator();
 Collections.sort(footballTeam, playerComparator1);

 // Sort the SORTED list by Age (Ascending)
 PlayerAgeComparator playerComparator2 = new

PlayerAgeComparator();
 Collections.sort(footballTeam, playerComparator2);

 // Printing out the footballTeam after sort
 System.out.println("After sorting: ");
 for (Player player : footballTeam) {

 System.out.println(player.getRanking() + " " +
 player.getName() + " " +
 player.getAge());
 }

